Customer Service and Support For IPTV Services Online

Customer care in VoD can be classified as follows:

  1. Network-preemptive, where network monitoring and remediation of problems work to ensure that failures or congestion do not affect service. This is a very important category because preventing customer complaints is normally far cheaper than responding to them.
  2. Service-preemptive, where explicit knowledge of a given customer’s state of VoD service can be obtained from the customer premises equipment, the content server, or from the network. This type of care can be targeted, as is network-level care, at preventing problems by anticipating congestion and so on, or it can be targeted at opening a customer dialog through the viewing channel to interdict any customer call. For example, a network congestion event that is known to cause packet loss can be assumed to affect service and might result in a brief note that “We’re sorry for the interruption, but the problem has been corrected.” This kind of message is rarely appropriate for network-preemptive care because not all customers are likely to have been affected.

Reactive, where the goal is to respond to a problem that is being reported by the customer. As an example take a look at https://insightiptv.com/home.html

Reactive care will have two primary goals: to induce the customer to seek online support rather than to involve a customer service representative, and to reduce the time to resolve the problem by providing customer support personnel with enough information to quickly diagnose the problem and offer remediation to the customer.

Video on demand is the most challenging of all network applications because of its bandwidth requirements and QoS requirements. Unless careful design and implementation practices are followed, the profit on these services can be quickly eroded, along with the credibility of the service provider.

Point-to-multipoint MPLS by David Jacobs

Real-time video distribution, with its high bandwidth requirement and low tolerance to jitter, has driven the development of point-to-multipoint Multiprotocol Label Switching (MPLS), but the technology can also benefit other types of data requiring highly scalable and reliable transport. Point-to-multipoint MPLS combines the efficiency of multipoint protocols such as PIM and DVMRP with the reliability and quality of service (QoS) capabilities of MPLS.

Video is typically distributed from a single source to a very large number of destinations. For example, the broadcast of a sporting event may require the same data stream to be sent simultaneously to cable system head-ends for every cable system in America. The data stream can consist of bandwidth up to 300 Mbps and require delivery without loss of data and without jitter. In the past, ATM or SONET has been used to meet these requirements. IP networks offer advantages of flexibility and relatively low cost compared to these older technologies but could not meet the requirements of video distribution prior to the development of point-to-multipoint MPLS.

 

 

Leave a Reply

Your email address will not be published. Required fields are marked *